Some remarks concerning differential flatness and tangent systems

Matthias Franke, Klaus Röbenack
Outline

1. Differential flatness - Geometric point of view

2. Tangent system, bases and integrability conditions

3. Systems with one input

4. Systems of codimension one

5. Conclusion
Differential flatness

Notation

- System
 \[\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x)u^i \]
 \[x \in \mathcal{X} \subset \mathbb{R}^n \]
 \[u \in \mathbb{R}^m \]

- Assume \(\text{rank}(g_1(x) \ldots g_m(x)) = m \)
 we can (locally) eliminate the inputs:
 \[F^i(x, \dot{x}) = 0, \quad i = 1, \ldots, n - m \]

- „Flat output“:
 \[y = (y^i) \quad y^i = h^i(x, \dot{x}, \ldots) \quad i = 1, \ldots, m \]
 \[x = (x^j) \quad x^j = k^j(y, \dot{y}, \ldots) \quad j = 1, \ldots, n \]
Differential flatness
Geometric point of view

Differential equations $F^i(x, \dot{x}) = 0$ define regular submanifold $S \subset J^1\pi$
Geometric point of view

Tangent system

Differential equation \(F(x, \dot{x}) = 0 \) defines regular submanifold \(S \subset J^1_\pi \)

Tangent space \(T_p S \) is defined by
\[
dF|_v = 0, \quad v \in T_p(J^1_\pi)
\]
\[
dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial \dot{x}} d\dot{x}
\]
Differential equation \(F(x, \dot{x}) = 0 \) defines regular submanifold \(S \subset J^1 \pi \)

All elements of \(T_p S \) are given by

\[
v = \sum_{k=1}^{m} \left(\sum_i v_{k,i} \frac{d^i}{dt^i} \right) \xi^k.
\]

"flat output of tangent system":

Dual basis \(\omega^i \in T^*_p J^1 \pi, \ i = 1, \ldots m \) such that \(\omega^i \mid v_k = \delta^i_k \)

Coordinates \(\xi^i \) are given by \(\xi^i = \omega^i \mid v = \omega^i(v) \)
Differential Flatness

Necessary and sufficient condition

Dual basis $\omega^i \in T^*_{p} J^1 \pi$, $i = 1, \ldots, m$ generates cotangent module $T^*_{p} S$.

Two bases are related by unimodular polynomial operator matrices

$$\tilde{\omega} = U \left(\frac{d}{dt} \right) \omega$$

$$U \left(\frac{d}{dt} \right) \in (\mathcal{K} \left[\frac{d}{dt} \right])^{m \times m}$$

System $F(x, \dot{x}) = 0$ is flat

There is an integrable basis $\tilde{\omega}$ of $T^*_{p} S$

Integrability means $d\tilde{\omega}^i = 0$, $i = 1, \ldots, m$

Flat output of $F(x, \dot{x}) = 0$ is given by integration of $dh = \tilde{\omega}$
Outline

1. Differential flatness - Geometric point of view

2. Tangent system, bases and integrability conditions

3. Systems with one input

4. Systems of codimension one

5. Conclusion
Systems with with one input

Tangent system

System

\[\dot{x} = f(x) + g(x)u \quad x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, u(t) \in \mathbb{R} \]

Linearization

\[d\dot{x} = \left(\frac{\partial f}{\partial x}(\sigma) + \frac{\partial g}{\partial x}(\sigma)\sigma_u \right) dx + g(\sigma)du \]

\[\begin{bmatrix} A & b \\ \end{bmatrix} \]

at solution

\[\sigma : t \mapsto x(t) \]

\[\sigma_u : t \mapsto u(t) \]

Controllability matrix of tangent system

\[
P = \begin{pmatrix} b & (A - \frac{d}{dt})b & \cdots & (A - \frac{d}{dt})^{n-1}b \end{pmatrix}
\]

\[
= \begin{pmatrix} g & \text{ad}_{-(f+gu)}g & \cdots & \left(\text{ad}_{-(f+gu)} - \sum_i \frac{\partial}{\partial u^{(i)}} g \right)^{n-1} g \end{pmatrix}_{(\sigma,\sigma_u)}
\]
Systems with with one input

Tangent system and Integrability condition

- Flat output of tangent system
 \[\omega = q dx = \sum_{i} q_i dx^i \]
 is given by the last row of inverse controllability matrix
 \[q \left(g \quad \text{ad}_{-f+gu} g \quad \cdots \quad \left(\text{ad}_{-f+gu} - \sum_i u^{(i)} \frac{\partial}{\partial u^{(i)}} \right)^{n-1} g \right) = (0 \quad \cdots \quad 0 \quad 1) \]
- System \(\dot{x} = f(x) + g(x)u \) is flat, if and only if
 \[d\omega \wedge \omega = 0 \]
- in this case \(\omega \) also annihilates distribution spanned by
 \[\left(g \quad \text{ad}_{-f} g \quad \cdots \quad \text{ad}_{-f}^{n-2} g \right) \]
 \[-> \text{dual version of well known flatness condition for } m = 1 \]
Outline

1. Differential flatness - Geometric point of view

2. Tangent system, bases and integrability conditions

3. Systems with one input

4. Systems of codimension one

5. Conclusion
Systems with n states and n-1 inputs

Tangent system

\[\dot{x} = f(x) + \sum_{i=1}^{n-1} g_i(x)u^i \quad x(t) \in X \subset \mathbb{R}^n, \quad u^i(t) \in \mathbb{R} \]

Linearization

\[d\dot{x} = \left(\frac{\partial f}{\partial x}(\sigma) + \sum_{i=1}^{n-1} u^i(t) \frac{\partial g_i}{\partial x}(x(t)) \right) dx^j + \sum_{i=1}^{n-1} g_i(x(t))du^i \]

\[A(t) \]

Assume controllability matrix of tangent system has full rank

\[(b_1 \quad \cdots \quad b_{n-1} \quad (A - \frac{d}{dt})b_1 \quad \cdots \quad (A - \frac{d}{dt})b_{n-1}) \]

Reorder inputs, such that

\[P = (g_1 \quad \cdots \quad g_{n-1} \quad \text{ad}_-(f+\sum_i g_iu^i)g_{n-1}) \]

has also full rank.
Systems with with n states and n-1 inputs

Tangent system

- Flat output of tangent system is given by
 \[
 \omega = \begin{pmatrix}
 \omega^1 \\
 \vdots \\
 \omega^{n-2} \\
 \omega^{n-1}
 \end{pmatrix}
 = \begin{pmatrix}
 g_1^T(x) \\
 \vdots \\
 g_{n-2}^T(x) \\
 g_{n-1}(x)
 \end{pmatrix}
 \ dx
 \]

- Integrability condition (Frobenius):
 \[
 g^\perp(x)g_i(x) = 0
 \]
 Dimension!
 \[
 d\omega^i \wedge \omega^1 \wedge \ldots \wedge \omega^{n-1} = 0, \quad i = 1, \ldots, n - 1
 \]

- Hence, there is a matrix \(\mu_i^j(x) \) (integrating factor), such that
 \[
 dh^j = \sum_{i=1}^{n-1} \mu_i^j(x)\omega^i
 \]

- Integration, gives flat output \(y^j = h^j(x) \) of nonlinear system
Conclusion

- Short view on geometry of differentially flat systems
- Flatness conditions in terms of integrability condition of flat outputs of the tangent system
- Dual version of the well-known condition for systems with one input
- Easier proof of the sufficient condition for systems with n states and n-1 inputs

Thank you!

contact: Matthias.Franke@eas.iis.fraunhofer.de
Klaus.Roebenack@tu-dresden.de